(Left) Depiction of an ancient Egyptian lathe. (Right) a modern CNC
horizontal turning center.The lathe is one of the oldest manufacturing
technologies on Earth. The earliest versions date all the way back to the
ancient Egyptians, who invented a two-person, bow-driven lathe around 1300 BCE.
Yet despite this venerable history, turning technology has been far from static,
as evidenced by the sophisticated CNC turning centers of today.
Read on for an overview of the components, types, operations and
applications of CNC turning centers.
Turning Center Basics
Lathes vs. Turning Centers: What’s the Difference?
You’ve probably seen the terms ‘CNC lathe’ and ‘CNC turning center’ used
interchangeably.
“[They’re] basically the same thing in my book,” said David Fischer, lathe
product specialist at Okuma America Corporation.
Nevertheless, while there is no formal distinction between lathes and
turning centers, the former term is often used to refer exclusively to simpler
machines—those designed for turning operations alone. In contrast, the term
‘turning center’ usually denotes machines which integrate milling or drilling
capabilities, or those with sub-spindles for performing secondary
operations.
“In my opinion, a CNC lathe just strictly does turning; it’s a 2-axis lathe
with X and Z axes and typically only one chuck,” said Rick Bramstedt, product
manager for Mazak’s Advantec division. “A CNC turning center has milling
capability, or a second spindle plus milling capability, and so it might have a
Y-axis as well. We also call those Multi-Tasking Machines. That’s how I see
turning centers: they offer more than just turning.”
Marlow Knabach, Chief Technology Officer for DMG MORI USA, agreed:
“I see it as the evolution of the lathe,” he said. “Most people called it a
lathe in the past, but as CNC became more elaborate and with the addition of
milling and sub-spindles, it evolved into a CNC turning center.”
Whether you’re working on a lathe or a turning
center, the basic parts are the same.
Headstock
The headstock houses the main spindle as well as the speed- and
gear-changing mechanisms. The main spindle end often includes a Morse taper. In
the early days of industrial lathes, the spindle was driven directly via a flat
belt pulley. These days, it’s driven by an electric motor.
Bed
The lathe bed is a base connected to the headstock such that the carriage
and tailstock move in parallel with the spindle access. This movement is
facilitated by bedways, which restrain the carriage and tailstock in a set
track.
Feedscrews and Leadscrews
The feedscrew is a long driveshaft that connects to a series of gears in
the apron in order to drive the carriage along the Z-axis. The leadscrew has the
same function but operates orthogonally to the feedscrew, moving the carriage
along the X-axis.
Feedscrews and leadscrews are manufactured to either imperial or metric
standards, which can cause compatibility issues between workpieces made on
different lathes.
Carriage
The carriage holds the cutting tool and moves it longitudinally to the
workpiece for turning operations or perpendicularly for facing operations. The
carriage is composed of two castings: the top, or saddle, and the side, or
apron.
Tailstock
The tailstock refers to the center mount which is positioned opposite to
the headstock. In contrast to the headstock, the spindle in the tailstock—which
can include a taper to hold drill bits, centers or other tooling—does not
rotate. Instead, it travels longitudinally under the action of a leadscrew.
Turning Center Operations
There are many operations that can be performed on a lathe, and even more
that can be performed on a turning center. Here are some of the most common:
Facing
Facing operations are used to produce flat surfaces on the end of a
part.
Threading
Threading operations produce external or internal threads on a part.
Knurling
Knurling operations are used to produce a regularly shaped roughness on
cylindrical surfaces.
Drilling
One of the most basic operations, drilling is used to generate holes in
workpieces.
Boring
Boring involves enlarging a hole or cavity to produce circular, internal
grooves.
Reaming
Reaming operations involve sizing and finishing existing holes.
Taper Turning
In taper turning, the diameter of the workpiece is gradually reduced over
the length of the part.
Turning Center Configurations
“You have essentially two different types of CNC machining centers: the
traditional, horizontal type that’s been around for quite some time, and then
you have the vertical type, which spins the part like a top instead of spinning
it like a car tire,” said James Petiprin, key account manager for EMAG, LLC.
“Horizontal probably makes up 60 or 70 percent of the market because it’s
been around longer—every machinist learned on a horizontal lathe.”
Horizontal Turning vs. Vertical Turning
CNC turning centers come in either horizontal or vertical configurations.
There are also inverted vertical turning centers, which reverse the position of
the spindle and the chuck. All three machine types generally consist of the same
basic components (i.e., headstock, carriage, etc.), but differ in their
orientation. Deciding whether to opt for a horizontal, vertical or inverted
vertical lathe depends on a host of factors, but there are some rules of thumb
that can help you make the decision.
“The advantage with a horizontal lathe is that gravity pulls the chips away
from the part,” said Knabach. “In other words, as you’re turning, all the chips
fall down into the chip conveyor or bin.”
A horizontal lathe: Mazak's QTU-200. (Image courtesy of Mazak.)“The
advantage of a vertical lathe is that gravity helps seat your part into your
workholding,” he continued. “But the chips can be an issue, especially if your
part is concave, since it can trap the chips internally. So you have the
possibility of re-cutting your chips. The other concern with a vertical lathe is
that the chips fall down into the spindle itself, so your guarding has to be
extremely efficient.”
“Generally, horizontal lathes are more flexible since they can have longer
bed lengths relative to spindle size,” said Fischer. “They can also use
barfeeders and commonly have tailstocks, a rarity on verticals. On the other
hand, if you are machining large diameter short parts, especially if they are
heavy parts, the vertical lathe works well.”
A vertical lathe: Okuma's V920EX. (Image courtesy of Okuma.)“It’s primarily
part size; that’s the biggest factor that determines between the two,” said
Bramstedt. “When we look at small turning applications, a lot of automotive
turning applications (transmission gear blanks, brake rotors, etc.) are done
vertically and typically with a twin spindle. One benefit of that is that you
have gravity working for you; when you put the part in the chuck, it seats
itself. Another benefit is chip flow, again thanks to gravity—all the chips tend
to fall away from the part into the pan or conveyor.”
“I’ve seen 30-inch diameter parts run on a horizontal machine,” he added,
“but loading it is tricky because you need to push the part into the chuck and
then hold it while you’re clamping it.”
Another factor to consider when choosing between horizontal and vertical
configurations is the extent to which your turning center will be automated.
“Horizontal lathes are usually easier [to automate] since the spindles and/or
tailstock are at opposite ends of the machine and the turret can be positioned
in such a way as to present minimal clearance issues,” said Fischer.
An inverted vertical lathe: EMAG's VL 4. (Image courtesy of EMAG.)Bramstedt
offered a different opinion: “As far as automatic loading, vertical is probably
the preferred method because of chip flow and because you don’t need the robot
to push the part in order to seat it.”
Regarding inverted vertical lathes, Petiprin noted that, “Inverted vertical
gives you a built-in automation that you don’t have on a horizontal, since the
spindle comes over and picks up the part, whereas in a horizontal you need a
robot or gantry to load the part.”
Is inverted vertical turning right for you? Follow the link to find
out.
Turning Applications
“CNC turning centers today are used in most metal cutting
environments—whether it’s automotive, aerospace, agriculture,” said Knabach.
“Any component that has a high degree of round parts—any type of a gear—usually
is machined on a turning center at least blank, prior to machining any of the
gears.”
“You really find turning centers in all industries,” said Petiprin. “EMAG’s
business is 85 percent automotive. If you break automotive out, there’s
transmission and driveline since they have the most round parts, and if you’re
using a lathe you’re turning round parts.”
Turret Tooling vs. Gang Tooling
On the chip-making side, a subject of frequent debate amongst manufacturing
professionals when it comes to CNC turning centers concerns the choice between
turret tooling and gang tooling.
Gang tooling on a CNC lathe.Turret tooling involves mounting a set of
cutting tools on a rotating, indexable toolholder. In contrast, gang tooling
involves setting up a row of tools inside the lathe on a cross-slide, which is
similar to the table on a milling machine.
Deciding which configuration is best for you depends—as always—on your
application, but there are some rules of thumb that can help you make your
decision.
“Generally, gang tooling is more useful on small lathes cutting small
parts, using a limited number of tools,” said Fischer. “Gang tooling works well
in these situations because the cycle time can be minimized since the turret
index time is eliminated. Also, tool change-over time can be reduced to nearly
zero since the tool plates can be switched out quickly for each job.”
Bramstedt agreed: “That’s the primary reason for choosing gang tooling:
dedicated, high-volume parts.
Turret tooling on a CNC lathe.“A turret can give you 12 tools, but it takes
a tenth of a second or half a second to index each tool and you typically have
to come off of the part to do that. That costs cycle time, but it’s also very
flexible—you can keep the same 12 tools in there and just reprogram the machine
to cut a different part.”
“The advantage to a turret is that you usually have a much larger work
envelope, so you have less interference from tool to tool,” said Knabach, “which
allows you to maintain a larger diameter with a turret, as opposed to gang
tooling. Of course, it’s determined by the configuration of the machine, but
generally speaking, gang tooling is much closer together and therefore you have
a smaller interference zone.”
“A turret permits greater tooling clearance and generally works better for
larger parts,” Fischer added. “On turrets, quick change tooling can be used on
each individual station to speed up change-over, but it won’t be as fast as
changing out the tool plate.”
Knabach agreed. “In today’s technology, it’s pretty short—you’re talking a
second or less—but if you have a lot of tools then that can still count up,
especially if you’re looking at near net shape turning,” he said.
This means that if you’re going for high-volume, it’s generally better to
opt for gang tooling in order to minimize cycle times. “We offer a couple of
gang machines,” said Bramstedt. “But those are typically dedicated to
high-volume parts because of that half a second turret index time.”
On the other hand, if your primary concerns are changeover and flexibility,
turret tooling may be the better option. “Changeover is very long on a gang
machine,” commented Bramstedt, “because you have to position the tools, probe
them, make a test cut, move them a little and take another test cut, etc.
Whereas with a turret, you load the tools, touch off your tool setter and you
go.”
Live Tooling
Many CNC turning centers can be equipped with live tooling, i.e., rotary
cutting tools powered by independent electric motors. This makes it possible to
drill holes in a part perpendicular to the main axis, which can be extremely
useful. Does that mean live tooling is always worthwhile?
Live tooling on a CNC turning center.“Live tooling really has
revolutionized the lathe, especially at DMG MORI,” said Knabach. “We have
technology where we incorporate a direct drive motor inside our turret. A
conventional drive mechanism would rely on gears or a belt and pulley to drive
the tool, but with ours it’s an integral spindle.”
“Live tooling is often one of those things that you don’t realize how great
it is until you actually use it,” agreed Fischer. “Once customers gain some
experience with it we often see them add the Y-axis as well to provide even more
capability and flexibility.”
“If I’m doing a bearing race or a bearing cone—something where you don’t
need to drill any holes—then I won’t need rotary tooling,” said Bramstedt, “But
other than that, I can’t really think of any cases where it wouldn’t be
useful.”
Fischer agreed: “There are, of course, certain situations where it is
better to break out the individual processes but these cases are fewer and
fewer. As lot sizes get smaller and machine capabilities get better (and
faster), the need to break out processes is reduced.”
“The benefit of live tooling is that it reduces work-in-process, which is
dollars in your pocket,” said Bramstedt. “If I have to turn this part on a lathe
and then take it off to cut a keyway, I have to put that on a vertical machining
center, so now my part is sitting on a skid while I set that up.”
Live tooling on DMG MORI's CTX beta 800 TC. (Image courtesy of DMG
MORI.)“We actually have some customers in applications where they’re not even
using the lathe for turning,” said Knabach. “They’re using it as an automated
production center with a bar feed, feeding the bar into the machine and perhaps
never turning on the turning spindle, but just using the live tools as a
machining center. They might use the turning spindle only to turn the bar long
enough for the cut off operation. Then you can use your parts catcher or
overhead gantry, whichever’s required, and now it’s a fully automated system
from a simple lathe with live tooling and perhaps a Y-axis.”
Turning Center Automation
With the dawn of Industry 4.0, automated machining is becoming more
widespread. CNC turning centers are no exception, although automating a CNC
lathe depends on the configuration of the machine (Vertical vs. Horizontal vs.
Inverted Vertical).
Robot unloading a horizontal lathe. (Image courtesy of Zacobria.)“A
horizontal lathe is typically loaded by a manual operator, so for automation you
go with a robot or a gantry—something that would pick it up from a known
location and then put it in the chuck,” explained Petiprin. “You want to utilize
80 percent of the robot’s time, so that usually means you can split two machines
between one robot, though if you have a shorter cycle time then you’ll need one
robot per machine.”
“Generally horizontal lathes are easier since the spindles and/or tailstock
are at opposite ends of the machine and the turret can be positioned in such a
way as to present minimal clearance issues,” Fischer added. “Either way, all of
our machines have been automated in many different configurations.”
Although CNC turning centers are just as amenable to automation as other
machine tools, there are some important differences between automating a lathe
and automating a machining center.
EMAG's inverted vertical lathes offer built-in automation. (Image courtesy
of EMAG.)“The fixturing or the workholding is the biggest difference,” said
Bramstedt. “We’ve automated machining centers on a regular basis, but you’re
typically loading into some type of special fixture with automatic or even
sequential clamping. It’s a much more complicated fixture and typically
dedicated to a part. That’s opposed to a lathe, where I can load a variety of
different parts with just a three jaw chuck. It’s very flexible as far as
workholding goes.”
CNC Turning: Bottlenecks and Mistakes
In manufacturing, mistakes and bottlenecks in efficiency are to be avoided
at all costs. This holds true even for a technology as old as the lathe, though
the advent of computing in manufacturing has gone a long way toward minimizing
these issues.
“Believe it or not, I still hear about people who have manual lathes in
their shop,” Bramstedt commented. “This is their first CNC and it just amazes me
that they can be competitive.”
Fischer offered a very different perspective:
“A seasoned veteran machinist (who also happened to be my dad) once told me
that no matter how many CNC lathes a shop had, they would always keep at least
one manual engine lathe and that is true here where we have two manual Okuma
lathes still in service.”
Bottlenecks for CNC Turning
One of the major limitations on lathe efficiency lies in the turning
operation itself. This is not an issue that can be overcome with better tooling,
as Bramstedt explained:
“Machine tools are always trying to catch up to tooling capabilities. You
might be able to cut at X amount of surface speed, but I can’t spin my chuck
fast enough to generate that kind of surface speed. With turning, your rpm is
limited because of chuck grip capabilities. The centrifugal force means that as
the chuck is spinning around, the jaws want to move outward. On a machining
center, the part is stationary and my tool—which is very compact—can be spun at
10, 12, 20 or even 40,000 rpm without big issues. There’s no way you can spin a
chuck at 40,000 rpm; it would just come apart.”
Another bottleneck for turning efficiency is one which applies to most
manufacturing processes: changeover.
“Depending on lot size the importance of
change-over varies,” said Fischer. “For a shop that does short run production,
change-over is critical and your workholding and tooling systems must be
carefully considered. These things take away from the available production time
of the machine.”
This raises the issue of program prove-out, which can be time consuming,
though there are ways to reduce it. “By having good simulation software and
utilizing Okuma’s Collision Avoidance System (CAS) the prove-out time can be
minimized and the machine is protected from operator error,” Fischer commented.
“And nothing eats into your production time like a machine crash!”
Common Mistakes in CNC Turning
Maximizing efficiency is one goal in manufacturing, but that goes hand in
hand with minimizing mistakes. Bramstedt and Fischer each pointed to different
sources of error when it comes to using CNC turning centers.
“Some customers want to maximize feeds and speeds,
so they crank it up to run 20 percent faster,” said Bramstedt. “They can do
that, but then they have to stand there and wait for something to explode,
whereas if they back off a little bit they can walk away from it. That’s not to
say nothing will happen, but the chances of unexpected tool failure are
minimized because we’re not pushing it to the maximum. We have a lot of
unattended cells here at Mazak where we do just that. Cycle times will be
slower, but at the end of the month the throughput is better.”
Fischer emphasized the importance of training: “You are placing a high-tech
piece of equipment in the hands of an operator/setup person/programmer. Invest
in training these people so that they can perform at a high level.”